A simple method for measuring the relative force exerted by myosin on actin filaments in the in vitro motility assay: evidence that tropomyosin and troponin increase force in single thin filaments.
نویسندگان
چکیده
We have studied the effect of an internal load on the movement of actin filaments over a bed of heavy meromyosin (HMM) in the in vitro motility assay. Immobilized alpha-actinin can bind to actin filaments reversibly and ultimately stop the filaments from moving. Above a critical concentration of alpha-actinin, thin filament velocity rapidly diminished to zero. The fraction of thin motile filaments decreased linearly to zero with increasing alpha-actinin concentration. The concentration of alpha-actinin needed to stop all filaments from moving (0.8 microg/ml with actin) was very consistent both within and between experiments. In the present study we have defined the 'index of retardation' as the concentration of alpha-actinin needed to stop all filament movement, and we propose that this index is a measure of the isometric force exerted by HMM on actin filaments. When we measured the effect of immobilized alpha-actinin on motility in the presence of 10 mM P(i) we found that the index of retardation was 0.62+/-0.07 (n=3) times that in the absence of P(i). This observation is in agreement with the reduction of isometric tension in chemically-skinned muscle due to P(i). In a series of comparative experiments we observed that tropomyosin and troponin increase the index of retardation and that the degree of increase depends upon the tropomyosin isoform studied. The index of retardation of actin is increased 1.8-fold by skeletal-muscle tropomyosin, and 3-fold by both cardiac-muscle and smooth-muscle tropomyosin. In the presence of troponin the index of retardation is 2.9-3.4-fold greater than that of actin with all tropomyosin isoforms.
منابع مشابه
Estimation of actomyosin active force maintained by tropomyosin and troponin complex under vertical forces in the in vitro motility assay system
The interaction between actin filaments and myosin molecular motors is a power source of a variety of cellular functions including cell division, cell motility, and muscular contraction. In vitro motility assay examines actin filaments interacting with myosin molecules that are adhered to a substrate (e.g., glass surface). This assay has been the standard method of studying the molecular mechan...
متن کاملModeling the evolution of cells outgrowth due to the force exerted by actins
Motility and membrane deformation are crucial to motile cells. Therefore formation of protrusion in the membrane has been the subject of various studies. The stable shape of the membrane and also its movements are controlled by the forces exerted by actin filaments. In order to study the protrusion behavior, we represented a toy model based on actin filaments polar characteristic and elastic ch...
متن کاملSingle-myosin crossbridge interactions with actin filaments regulated by troponin-tropomyosin.
Striated muscle contraction is governed by the thin filament regulatory proteins troponin and tropomyosin. Here, we investigate the molecular mechanisms by which troponin-tropomyosin inhibits myosin's interactions with the thin filament in the absence of calcium by using a laser trap. The displacement events for a single-myosin molecule interacting with a reconstituted thin filament were shorte...
متن کاملTroponin I and troponin T interact with troponin C to produce different Ca2+-dependent effects on actin-tropomyosin filament motility.
We have developed an in vitro motility assay to make a detailed quantitative analysis of Ca2+ control of skeletal-muscle troponin-tropomyosin control of actin-filament movement over immobilized myosin. Ca2+ regulates both filament velocity and the fraction of filaments that are motile. We have demonstrated that the two effects are due to separate interactions of troponin C with troponin I and t...
متن کاملInvestigation of a Truncated Cardiac Troponin T That Causes Familial Hypertrophic Cardiomyopathy Ca Regulatory Properties of Reconstituted Thin Filaments Depend on the Ratio of Mutant to Wild-Type Protein
Familial hypertrophic cardiomyopathy (HCM) is caused by mutations in at least 8 contractile protein genes, most commonly b myosin heavy chain, myosin binding protein C, and cardiac troponin T. Affected individuals are heterozygous for a particular mutation, and most evidence suggests that the mutant protein acts in a dominant-negative fashion. To investigate the functional properties of a trunc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 350 Pt 3 شماره
صفحات -
تاریخ انتشار 2000